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• What is ICA?

• Independent Component Analysis: Identify latent independent sources which
generate the data via some ”mixing” of the sources.

• Not to be confused with PCA → data compression.

• Goal: Learn useful representations in data → statistically independent.

• independent latent components → ”principled disentanglement”

• Linear ICA is successful.
• Problem: Nonlinear ICA is ill-defined → not identifiable

1 Use temporal structure.
2 Use auxiliary observed variables.
3 Consider extra assumptions on the mixing function.
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Linear independent component analysis

xi =

n∑
j=1

aijsj i = 1, . . . , n (1)

x = As, p(s) =
n∏

i=1

pi(si) (2)

• x denotes the observation.

• A = {aij}nij is the linear mixing.

• s denotes the independent latent sources.

Linear ICA is identifiable assuming non-Gaussian sources s [Comon, 1994].

• Using only observations {x(1), . . . , x(N)}, we can recover both A and s.

• Gaussian sources are not identifiable
→ any orthogonal transformation s′ = Rs leaves the distribution unchanged.
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Linear ICA identifiability proof idea

Recall the linear ICA model

x = As, p(s) =
n∏

i=1

pi(si) (3)

where A is the true linear mixing.

Compute estimate of the sources s′

x = Fs′ (4)

Identifiability is achieved by showing the following relation

F = ADP, (5)

where D is a diagonal matrix and P is a permutation [Comon, 1994].
Linear ICA is easily estimated by maximizing non-Gaussianity.
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Conclusions

ICA vs PCA

ICA should not be confused with PCA!

• PCA estimates directions with greatest variance in data (principal components)

• ICA estimates the statistically independent components.

PCA is not identifiable → cannot find the original sources.
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Nonlinear ICA

Can we perform a similar analysis for a nonlinear mixing?
→ generalise disentanglement

xi = fi(s1, . . . , sn) i = 1, . . . , n p(s) =
n∏

i=1

pi(si) (6)

we cannot recover original sources with the same assumptions
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Nonlinear ICA

• Identifiability
pθ(x) = pθ′(x) =⇒ θ = θ′, ∀(θ, θ′) (7)

• Nonlinear ICA is not identifiable!
[Darmois, 1951, Hyvärinen and Pajunen, 1999]

• Darmois construction
• For any x1, x2, construct y = h(x1, x2) independent of x1 as

h(z1, z2) = p(x2 < z2|x1 = z1) (8)

• Independence alone is too weak for identifiability.
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Time-Contrastive Learning (TCL) and ICA

First proof for identifiable nonlinear ICA [Hyvarinen and Morioka, 2016].

Time-contrastive Learning

1 Observe time series x(t) ∈ Rn.

2 Divide x(t) into T segments.

3 Train MLP to discriminate segments.

4 Last hidden layer h(x; θ) should
account for nonstationarity.

Nonstationary ICA

• x(t) = f(s(t))

• f : Rn → Rn, smooth invertible and
nonlinear.

• sources si(t) are nonstationary

pτ (si) ∼ qi,0(si) +
V∑

v=1

λi,v(τ)qi,v(si)

(9)
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Conclusions

Time-Contrastive Learning (TCL) and ICA

• Assume we apply TCL on x(t).

• TCL finds s(t)2 = Ah(x(t)) for some linear mixing A

• TCL demixes nonlinear ICA up to linear mixing and squaring!

• Under further assumptions → A can be estimated by linear ICA.
• Important result: This opens the direction of nonlinear ICA in time-series

• Independence at every time step and point → more constraints → identifiability
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Conclusions

Permutation-Contrastive Learning and ICA

• Similar idea as TCL for autorregressive time series → Sources are stationary

1 Observe time series x(t) ∈ Rn.
2 Take short time windows:

y(t) =
(
x(t), x(t− 1)

)
(10)

3 Create randomly time-permuted data:

y ∗ (t) =
(
x(t), x(t∗)

)
, (11)

where t* is a random time step
4 Train an MLP to classify y and y∗

• Under certain assumptions, we have si(t) = ki(hj(x(t))) for some ordering of
j and scalar nonlinearities ki.
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Conclusions

Permutation-Contrastive Learning and ICA

Example: Autoregressive model with Laplacian innovations

log p(s(t)|s(t− 1)) = −|s(t)− ρs(t− 1)| (12)
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Conclusions

Hidden Markov Nonlinear ICA

• Learn states and dynamics using the Hidden Markov model (HMM)
framework.

• Similar to TCL with latent conditioning variables.

p(s(t)|u(t);λu(t)) (13)

=

n∏
i=1

h(s
(t)
i )

Z(λi,u(t))

exp{⟨λi,u(t)),Ti(si)⟩} (14)

• Idea: Identify independent components using HMM identifiability
[Gassiat et al., 2016].

• Strong identifiability results si = wij ĝj(x) + bij [Hälvä and Hyvarinen, 2020].
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Conclusions

Hidden Markov Nonlinear ICA

• Learning can be done by EM (Baum-Welch).
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Structured Nonlinear ICA (SNICA)

• Generalise identifiable nonlinear ICA for structured noisy data (e.g. time
series) [Hälvä et al., 2021].

• Q: What type of structures allow identifiable disentanglement?
• Main assumptions:

1 Weak stationarity: distributions for s
(t)
i and s

(t′)
i are the same for any

t, t′ ∈ T,∀i.
2 Unconditional independence between components

p(s(t1), . . . , s(tm)) =

n∏
i=1

p(s
(t1)
i , . . . , s

(tm)
i ) (15)

3 Noisy model xt = f(st) + εt, with εt i.i.d. noise with unknown distribution.
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Structured Nonlinear ICA (SNICA) – Examples

• SNICA covers and extends previous identifiable models

• It also introduces new structured models (∆-SNICA).
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Conclusions

ICA in DLVMs
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ICA in Deep Latent Variable Models (DLVM)

• Generative framework for data x and latent z, with parameters θ.

pθ(x, z) = pθ(x|z)pθ(z) (16)

and a data generative process

D = {x(1), x(2), . . . , x(N)} (17)

z∗(i) ∼ pθ∗(z), x(i) ∼ pθ∗(x|z∗(i)) (18)

• Data likelihood can be computed as∫
pθ(x, z)dz = pθ(x) ≈ pθ∗(x) (19)
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ICA in Deep Latent Variable Models (DLVM)

• Variational autoencoders (VAEs) [Kingma and Welling, 2013]:
1 Use factorised Gaussian prior p(z) =

∏n
i=1 p(zi)

2 Posterior is defined as x = g(z) + ε.

• Recall identifiability in ICA

∀(θ, θ′) : pθ(x) = pθ′(x) =⇒ θ = θ′ (20)

• VAEs are not identifiable.

• By Gaussianity, we have equivalence to othogonal rotations

z′ = Rz, z ∼ pθ(z) = N (0, I) (21)

pz′(ξ) = pz(R
T ξ)|detR| = 1

(2π)n/2
exp

{
− 1

2
||RT ξ||2

}
(22)

=
1

(2π)n/2
exp

{
− 1

2
||ξ||2

}
= pz(ξ) (23)
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ICA in Deep Latent Variable Models (DLVM)

• VAE is not identifiable.
• Practically used for data compression → PCA.

• But conditioning makes the model identifiable (e.g. time segment, history, ...).

• Solution: Condition sources by some auxiliary observed variable u
[Khemakhem et al., 2020].

• sources si conditionally independent
given u.

• Provably identifiable

• Estimated using identifiable VAE
(iVAE).
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Conclusions

ICA with unconditional priors
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Conclusions

Nonlinear ICA with unconditional priors

• Recent identifiability proof with unconditional priors [Zheng et al., 2022].

x = f(s), p(s) =
n∏

i=1

pi(si) (24)

• Identifiability is achieved via restrictions on the mixing function f.

Structural sparsity
1 • Given si, there exists a set of x such

that si is the only latent source
generating the set.

Factorial change of volume
2 • E.g. volume-preserving

transformation

• It helps weakening the
requirement of auxiliary variables.
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Conclusions

Nonlinear ICA with unconditional priors

• Identifiable up to component-wise invertible transofrmation and permutation
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Conclusions

• Identifiability in ICA is a fundamental issue, where for the linear case is solved.

• Nonlinear ICA is generally ill-defined as proven unidentibiable.
• Additional assumptions are required for identifiability

1 Structured data
2 Auxiliary conditioning variables
3 Restrictions on the nonlinear mixing

• ICA has connections to DLVMs → iVAE, ∆-SNICA

• ICA is a principled framework for ”disentanglement”
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